TI Instructions

How to find the variance:

Steps	Instructions	Screen Shots
1	Press STAT	CALC TESTS DEEdit 2:SortÄ(3:SortD(4:ClrList 5:SetUPEditor
2	Press ENTER	L1 L2 L3 1 L1(1) =
3	Key in 12, 23, 17, 25, 18, 18, 23, 32, 16, and 24. Make sure to press ENTER after each one to store the data into L1.	L1 L2 L3 1 18 18 23 32 16 24 L1(11) =
4	Press STAT , then arrow to the right once.	EDIT DENED TESTS 1001-Var Stats 2:2-Var Stats 3:Med-Med 4:LinRe9(ax+b) 5:QuadRe9 6:CubicRe9 74QuartRe9
5	Press ENTER to select 1:1-VAR Stats.	1-Var Stats ∎

6	Press 2 nd 1 to select L1	1-Var Stats Lı
7	Press ENTER to perform the calculation.	1-Var Stats x=20.8 Σx=208 Σx²=4620 Sx=5.711586664 σx=5.418486874 ↓n=10
8	Arrow down several times to view the rest of the calculations.	1-Var Stats 1n=10 minX=12 Q1=17 Med=20.5 Q3=24 maxX=32
9	Press CLEAR to clear the display screen.	
10	Press VARS	WHE Y-VARS 1 Window 2 Zoom 3 GDB 4 Picture 5 Statistics 6 Table 7 String
11	Press 5 for 5:Statistics	Σ EQ TEST PTS 19 2:× 3:S× 4:σ× 5:9 6:S9 7↓σ9

12	Press 3 for 3:Sx followed by X ²	Sײ
13	Press ENTER	5ײ 32.62222222
14	To get this result in fraction form Press MATH followed by 1 for 1: ► Frac	MANE NUM CPX PRB 2:⊧Dec 3:3 4:3√(5:×√ 6:fMin(7↓fMax(
15	Press ENTER twice	Sx² 32.62222222 Ans⊧Frac 1468/45

If you want to find population variance, follow same steps except in step 12 choose ${\bf 4}$ for ${\bf 4}{\bf :}\sigma_{\rm X}$.